Spectral and norm estimates for matrix-sequences arising from a finite difference approximation of elliptic operators

نویسندگان

چکیده

When approximating elliptic problems by using specialized approximation techniques, we obtain large structured matrices whose analysis provides information on the stability of method. Here provide spectral and norm estimates for matrix sequences arising from Laplacian via ad hoc finite differences. The involves several tools theory in particular setting Toeplitz operators Generalized Locally sequences. Several numerical experiments are conducted, which confirm correctness theoretical findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum-norm estimates for resolvents of elliptic finite element operators

Let Ω be a convex domain with smooth boundary in Rd. It has been shown recently that the semigroup generated by the discrete Laplacian for quasi-uniform families of piecewise linear finite element spaces on Ω is analytic with respect to the maximum-norm, uniformly in the mesh-width. This implies a resolvent estimate of standard form in the maximum-norm outside some sector in the right halfplane...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Estimates of Norm and Essential norm of Differences of Differentiation Composition Operators on Weighted Bloch Spaces

Norm and essential norm of differences of differentiation composition operators between Bloch spaces have been estimated in this paper. As a result, we find characterizations for boundedness and compactness of these operators.

متن کامل

Maximum-norm Resolvent Estimates for Elliptic Finite Element Operators on Nonquasiuniform Triangulations

In recent years several papers have been devoted to stability and smoothing properties in maximum-norm of finite element discretizations of parabolic problems. Using the theory of analytic semigroups it has been possible to rephrase such properties as bounds for the resolvent of the associated discrete elliptic operator. In all these cases the triangulations of the spatial domain has been assum...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2023

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2023.03.005